
1

Introduction
 Instructions of a program are executed either

 Sequential manner

 Branching

 C language supports the following decision making
statements.
 if statement

 switch statement

 conditional operator

 goto statement

2

if statement
• It is used to control flow of execution of statement.

• It is two-way decision statement and is used in conjuction with an
expression/condition

Ex: if (age is more than 55)

Person is retired

Test expression
?

3

True

Entry

False

simple if if-else nested if-else else if ladder

Different forms of if statement

4

Simple if statement
Syntax: if (Condition)

{ entry

statement block; true

}

statement x ;
Ex: if (category == sports) false

{

marks=marks+bonus;

}

printf (“%f”,marks);

Test expression?

Statement x

Statement block

5

Program of simple if statement
main()

{

int a,b,c,d;

float ratio;

printf(“\n enter four integer values”);

scanf(“%d %d %d %d”,&a,&b,&c,&d);

if(c-d !=0)

{

ratio= (float) (a+b)/(float)(c-d);

}

printf(“Ratio= %f”, ratio);

} Output: enter four integer values

12 23 34 45

Ratio= -3.181818 6

The if…else statement entry

Syntax: if(Condition)

{ true

true block statement; false

}

else

{

false block statement;

}

statement x;

Ex-: if (code== 1) if (code==1)

boy=boy+ 1; boy=boy+1;

if (code== 2) else

girl=girl+1; girl=girl+1;

Condition

True block statement False block statement

Statement x

7

Program for if…else statement
main()

{

int a;

printf(“Enter an integer\n”);

scanf(“%d”,&a);

if(a%2==0)

printf(“ %d is even number”,a);

else

printf(“%d is an odd number”,a);

}

output- Enter an integer

46

46 is an even number

8

Nested if…else statement
Syntax-
if(test condition 1)

{
if (test condition 2)

{
statement 1;

}
else
{

statement 2;
}

}
else

{
statement 3;
}

statement x ;

9

Program for nested if…else statement

10

The else if ladder

syntax-:
if (condition 1)

statement 1 ;

else if (condition 2)

statement 2 ;

else if (condition 3)

statement 3 ;

else if(condition n)

statement n ;

else

default statement ;

statement x;

11

Flowchart of else….if ladder

12

The switch statement

 The complexity of a program increases by
increasing no. of if statement.

 To overcome this, C has a built in multi-way
decision statement known as switch.

13

Syntax
switch (expression)

{
case value-1: case labels

block1;
break;

case value-2:
block2;
break;

.

.

.
default:

default block;
break;

}
statement x;

14

Flowchart for switch statement

15

Program for switch statement
main()
{
int grade,mark,index;
printf(“Enter ur mark \n”);
scanf(“%d”,&mark);
index=mark/10;
switch(index)
{
case 10:
case 9:
case 8:
case 7:

case 6:
grade=1;
break;

case 5:
grade=2;
break;

case 4:
grade=3;
break;

default:
grade=0;
break;

}
printf(“The grade is %d”,grade);

}

16

The goto statement
• The goto statement is used for branching unconditionally.
• The goto statement breaks normal sequential execution of the program.
• The goto requires label to where it will transfer the control.
• Label is a valid variable name followed by a colon(:).

goto label:

label:

statement;

FORWARD JUMP

label:

statement;

goto label;

BACKWARD JUMP

17

Program to calculate sum of squares of all integers
main()

{
printf(“one\n”);
printf(“two\n”);
goto abc;
printf(“three\n”)
printf(“four\n”);
abc:
printf(“five\n”);
}

18

19

Loops
 A loop allows a program to repeat a group of

statements, either any number of times or until some
loop condition occurs

 Convenient if the exact number of repetitions are
known

 Loop Consists of
 Body of the loop
 Control Statement

20

Test
Condition

Body of Loop

Entry Controlled/Pre-Test Loop

Test
Condition

Body of Loop

Exit Controlled/Post-Test Loop

True

FalseTrue

False

21

Common loops

for while do while

22

for
Syntax:

for (expr1; expr2; expr3)
{

statement block;
}

 expr1 does initializtion of the control variable(s),

 expr2 represents a condition that ensures loop
continuation,

 expr3 modifies the value of the control variable(s)
initially assigned by expr1

23

for (i=1; i <= n; i = i + 1)

keyword

control variable i

increment of control variable

loop continuation
condition

initial value
of control
variable

final value of control variable
for which the condition is true

24

Examples
 Vary the control variable from 1 to 100 in increments of 1

for (i = 1; i <= 100; i++)

 Vary the control variable from 100 to 1 in increments of -1
for (i = 100; i >= 1; i=i-1)

 Vary the control variable from 5 to 55 in increments of 5
for (i = 5; i <= 55; i+=5)

25

Examples 2
#include <stdio.h>
main()
{

/* a program to produce a Celsius to Fahrenheit conversion chart for the
numbers 1 to 100 */
int celsius;
for (celsius = 0; celsius <= 100; celsius++)

printf(“Celsius: %d Fahrenheit: %d\n”, celsius, (celsius * 9) / 5 + 32);
}

26

Nested for loops
 Nested means there is a loop within a loop

 Executed from the inside out
 Each loop is like a layer and has its own counter

variable, its own loop expression and its own loop body

 In a nested loop, for each value of the outermost counter
variable, the complete inner loop will be executed once

27

General form

for (loop1_exprs) {
statment p;
statement q;

for (loop2_exprs) {
statements for loop2
}
statment y;
statement z;

}

28

while

expression 1; initialization of condition variables

while (expression 2) condition checking
{
statement block;
expression 3; updates of condition variables

}
Statement X;

29

 The statement is executed repeatedly as long as the
expression2 is true (non zero)

 When the expression becomes false, the execution
resumes from statement X.

30

 If the test expression in a while loop is false initially, the
while loop will never be executed

int i = 1, sum = 0;
while (i <= 10)
{

sum = sum + i;
i= i + 1;

}
printf(“Sum = %d\n”, sum);

31

for and while
for(expr1; expr2; expr3)

statement;

expr1;
while(expr2)
{

statement;
expr3;

}

32

break and continue
 These interrupt normal flow of control

 break causes an exit from the innermost enclosing
loop

 continue causes the current iteration of a loop to stop
and the next iteration to begin immediately

33

while (expression)
{

statements;
if(condition)
break;
more_statements

}

while (expression)
{

statements
continue;
more_statements

}

34

do-while
 When a loop is constructed using while, the test

for continuation is carried out at the beginning of
each pass

 With do-while the test for continuation takes place
at the end of each pass

do
{
statement

} while (expression);

35

Example
int i = 1, sum = 0;

do
{

sum = sum + i;
i= i + 1;

}while(i<=10);
printf(“Sum = %d\n”, sum);

36

while vs. do-while
 while -- the expression is tested first, if the result is

false, the loop body is never executed

 do-while -- the loop body is always executed once.
After that, the expression is tested, if the result is false,
the loop body is not executed again

37

	DECISION MAKING & BRANCHING�
	Introduction
	Slide Number 3
	Different forms of if statement
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Nested if…else statement
	Program for nested if…else statement
	Slide Number 11
	Flowchart of else….if ladder�
	The switch statement�
	Syntax
	�Flowchart for switch statement�
	Program for switch statement
	The goto statement
	Program to calculate sum of squares of all integers
	Looping
	Loops
	Slide Number 21
	Common loops
	for
	Slide Number 24
	Examples
	Examples 2
	Nested for loops
	Slide Number 28
	while
	Slide Number 30
	Slide Number 31
	for and while
	break and continue
	Slide Number 34
	do-while
	Example
	while vs. do-while

