DECISION MAKING &
NCHING

/

Introduction

Instructions of a program are executed either
e Sequential manner

e Branching

C language supports the following decision making
statements.

e if statement
e switch statement
e conditional operator

¢ goto statement

If statement

e It is used to control flow of execution of statement.

o It is two-way decision statement and is used in conjuction with an
expression/condition

Ex: if (ageis more than 55) Entry

Person is retired

True

Different forms of if statement

simpleif if-else nested if-else else if ladder

Simple If statement
Syntax: if (Condition)
{

statement block;

}

statement X ;

{ entry
true

Ex: if (category == sports) false

{

marks=marks+bonus;

}
printf (“%f”",marks);

.

main()
{
int a,b,c,d;
float ratio;
printf("\n enter four integer values”);
scanf(“%d %d %d %d”,&a,&b,&c,&d);
if(c-d 1=0)
{
ratio= (float) (a+b)/(float)(c-d);
}
printf(“Ratio= %f", ratio);
} Output: enter four integer values
12 23 34 45
Ratio= -3.181818

Program of simple if statement

The if...else statement { entry
Syntax: if(Condition)
{

true block statement;

}

else

{

false block statement;

}

statement x;

Ex-: if (code==1) if (code==1)
boy=boy+ 1; boy=boy+1,
if (code==2) else

girl=girl+1; girl=girl+1,; 7

—_—

~_— Program for if...else statement
main()
{
int a;
printf(“Enter an integer\n”);
scanf(“%d”,&a);
if(a%2==0)
printf(“ %d is even number”,a);
else
printf(“%d is an odd number”,a);
}
output- Enter an integer
46

46 1S an even number

Syntax-

True

statement-1

if(test condition 1) Entry
{
if (test condition 2)
test
{ condition 1
statement 1: :
}
else l
{
statement 2; statement-2
} A
J 1
else statement-x
statement 3; !
Next statement

}

statement X ;

gFam TOrr neste

'f.._d--l__» -

main()
! float A, B. C;

intf(“Enter three values\n™);
Lf({'%f %1 %1", &A, &B, &C).

printf (*\nLargest value is ")
it (A>B)

printf(“%f\n", C).

printf("%f\n”, C).
printf("%1\n", B)

Enter three values
23445 67379 88843

Largest value is 88843000000

10

syntax-:
If (condition 1)
statement 1 ;
else if (condition 2)
statement 2 ;
else if (condition 3)
statement 3 ;
else if(condition n)
statement n ;
else
default statement ;

statement x;

11

The switch statement

The complexity of a program increases by
increasing no. of if statement.

To overcome this, C has a built in multi-way
decision statement known as switch.

13

Syntax

switch (expression)

{
case value-1: > case labels
block1;:
break;
case value-2:
block?2;
break;
default:
default block;
break;
}

statement x;

14

_—

Program for switch statement

{main()
int grade,mark,index;
printf(“Enter ur mark \n”);
scanf(“%d” &mark);
index=mark/10;
?Witch(index)
case 10:
case Q:
case 8:
case 7:

case 6:
%radezl :
reak;
case 5:
%radeZZ;

reak;

case 4:
%rade=3 :
reak;
default:
%radezo :

reak;

J
printf(“The grade is %d”,grade);

}

16

—lhe goto statement

The goto statement is used for branching unconditionally.

The goto statement breaks normal sequential execution of the program.

The goto requires label to where it will transfer the control.
Label is a valid variable name followed by a colon(:).

goto label: label:
______________ statement;
N
statement; goto label;
FORWARD JUMP BACKWARD JUMP

17

Program to calculate sum of squares of all integers

main()

{
printf(“one\n”);
printf(“two\n”);
goto abc;
printf(“three\n”)
printf(“four\n”);
abc:
printf(“five\n”);
}

18

ooping

=

Loops

A loop allows a program to repeat a group of
statements, either any number of times or until some
loop condition occurs

Convenient if the exact number of repetitions are
known

Loop Consists of
e Body of the loop
e Control Statement

20

Body of Loop

False
Test

Condition

Test
Condition

Body of Loop

Entry Controlled/Pre-Test Loop Exit Controlled/Post-Test Loop ,

A\ A\ A\

for while do while

22

Syntax:

for (exprl; expr2; expr3)
{

statement block:

}
exprl does initializtion of the control variable(s),

expr2 represents a condition that ensures loop
continuation,

expr3 modifies the value of the control variable(s)
Initially assigned by exprl

23

//
keyword final value of control variable
for which the condition is true
control variable i
for (iI=1;,1<=n;1=1+1)
initial value \
of control iIncrement of control variable
variable

loop continuation
condition

24

/

Examples

Vary the control variable from 1 to 100 in increments of 1
for (i=1;1<=100; i++)

Vary the control variable from 100 to 1 in increments of -1
for (i=100;1>=1;i=1-1)

Vary the control variable from 5 to 55 in increments of 5
for (i =5; 1 <= 55; 1+=5)

25

-
Examples 2

#include <stdio.h>
main()

{

[* a program to produce a Celsius to Fahrenheit conversion chart for the
numbers 1 to 100 */

Int celsius;
for (celsius = 0; celsius <= 100; celsius++)

printf(“Celsius: %d Fahrenheit: %d\n”, celsius, (celsius * 9) / 5 + 32);
}

26

/

Nested for loops

Nested means there is a loop within a loop

Executed from the inside out

e Each loop is like a layer and has its own counter
variable, its own loop expression and its own loop body

 In a nested loop, for each value of the outermost counter
variable, the complete inner loop will be executed once

2

General form

for (loopl _exprs) {
statment p;
statement Q;

for (loop2_exprs) {
statements for loop2
}

statment y;
statement z;

28

/

while

expression 1, —— initialization of condition variables

while (expression 2) —— condition checking

{

statement block;
expression 3,—— updates of condition variables

}

Statement X;

28

The statement is executed repeatedly as long as the
expression? is true (non zero)

When the expression becomes false, the execution
resumes from statement X.

30

If the test expression in a while loop is false initially, the
while loop will never be executed

Inti=1, sum = 0;
while (i <= 10)
{
sum = sum + I;
=i+ 1;

}

printf(“Sum = %d\n”, sum);

£

| for and while

for(exprl; expr2; expr3)
statement;

G

exprl;
while(expr2)
{
statement;
expr3;

32

break and continue

These interrupt normal flow of control

break causes an exit from the innermost enclosing
loop

continue causes the current iteration of a loop to stop
and the next iteration to begin immediately

33

while (expression)

{

statements;
if(condition)

break;
more_statements

P
<

while (expression)

{

statements
continue;

more_statements

34

/

do-while

When a loop is constructed using while, the test
for continuation is carried out at the beginning of
each pass

With do-while the test for continuation takes place
at the end of each pass

do
{

statement
} while (expression);

3D

P -
Example

Inti=1, sum=0;
do
{
sum = sum + I;
=i
while(i<=10);
printf(*"Sum = %d\n”, sum);

36

- =
while vs. do-while

while -- the expression is tested first, if the result is
false, the loop body is never executed

do-while -- the loop body is always executed once.
After that, the expression is tested, if the result is false,
the loop body is not executed again

£V

	DECISION MAKING & BRANCHING�
	Introduction
	Slide Number 3
	Different forms of if statement
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Nested if…else statement
	Program for nested if…else statement
	Slide Number 11
	Flowchart of else….if ladder�
	The switch statement�
	Syntax
	�Flowchart for switch statement�
	Program for switch statement
	The goto statement
	Program to calculate sum of squares of all integers
	Looping
	Loops
	Slide Number 21
	Common loops
	for
	Slide Number 24
	Examples
	Examples 2
	Nested for loops
	Slide Number 28
	while
	Slide Number 30
	Slide Number 31
	for and while
	break and continue
	Slide Number 34
	do-while
	Example
	while vs. do-while

